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Abstract.
Vertical Axis Wind Turbines have yet to see wide-spread use as a means of harvesting the

kinetic energy of the wind. This may be due in part to the difficulty in modeling the relatively
complex flow field and hence performance of these units. Additionally, similar to Horizontal Axis
Wind Turbines, VAWTs are difficult to properly test in a conventional wind tunnel. Typically
Reynolds numbers cannot be matched or the turbine geometry must be altered, limiting the
applicability of the results. Presented in the following is a set of experiments in a specialized,
high-pressure wind tunnel used to achieve high Reynolds numbers with a small-scale model.
The performance change of this model is investigated at two different solidities and over nearly
a decade of Reynolds numbers (based on diameter: 600, 000 ≤ ReD ≤ 5 × 106). The non-
dimensional power coefficient displays behavior consistent with Reynolds number invariance,
regardless of solidity. In addition, the change in performance as this limit is approached also
shows no direct dependence on the solidity for the VAWT geometry used in this study. The
results of this work have direct application for modeling and simulation efforts concerning the
performance of new VAWT designs.

1. Introduction
Despite continued research effort over the past several decades, vertical axis wind turbines
(VAWTs) have yet to see wide-spread acceptance in the commercial wind industry. The flow field
created by a VAWT has proven to be much more difficult to model than that of a similarly sized
horizontal axis wind turbine (HAWT). This difficulty arises from the highly three-dimensional
flow field created by each turbine blade and the turbulent, asymmetric wake shed behind the
units. However, from an experimental and computational point of view, the governing non-
dimensional parameters for both HAWTs and VAWTs remain the same:

Re =
U∗L∗

ν
; λ =

ωR

U∗
; Ma =

ωR

a
; (1)

where ω is the angular velocity of the rotor, R the rotor radius, ν is the kinematic viscosity
of the working fluid, and a the speed of sound. The characteristic velocity scale is represented
by U∗ (such as the free-stream velocity) while L∗ is the characteristic length scale (such as the
rotor diameter or chord length). Both Re and λ are equally as difficult to match in a typical
laboratory-scale atmospheric wind tunnel for a VAWT as for a HAWT owing to the inverse
scaling relationship with velocity. The only free parameter available for matching Re in an



atmospheric wind tunnel is the tunnel velocity, U , appearing in the numerator of Re, but the
denominator of λ. For a typical length-scale reduction of Rmodel/Rfull−scale ≈ 1/100 the rotation
rate of the model, ω, must be increased 10, 000 times for Re and λ to match. Rotational rates
of this magnitude are not only mechanically infeasible, but the resulting tip velocities make it
impossible to match the Mach number, Ma.

Despite these difficulties, the scale effect on VAWT performance remains a subject of
interest, especially at full-scale Reynolds numbers. Due to the increased cost and complexity of
performing large-scale experiments or full numerical simulations, only a few studies at or near
full-scale Re values have been accomplished. Furthermore, if the effect of changing solidity was
also studied, the available results are even more sparse. Here solidity is defined as:

σ =
nc

2R
(2)

where c is the blade chord and n the number of blades. Early work suggested that a value of
σ = 0.3 would return the highest turbine efficiency [1]. Although commercial field turbines can
often be higher solidity, with σ values near or exceeding unity [2], warranting their inclusion
in research work. A final note is that different model geometries are often used making direct
comparisons difficult (see [3] for a review of VAWT configurations).

Numerical simulations performed on the H-rotor VAWT using various solidities have observed
high Reynolds number trends [4]. For each solidity tested (σ = 0.13, 0.25, 0.47, 0.79), the turbine
efficiency increased with Reynolds number across all tip speed ratios. Furthermore, although
the specific value of the maximum efficiency did depend on σ, all cases displayed asymptotic
behavior as Reynolds number was increased.

Several laboratory and field measurements of turbine efficiency have been performed on large
or full-scale models [5, 6, 7]. In all cases the general trends compare well with the H-rotor
simulations: model performance was increased for all tip speeds and all solidities (σ = 0.13 to
0.3) by increasing the Reynolds number. However, no clear plateau behavior was observed for
the two smaller-scale experiments (one wind tunnel and one field test) [5, 6]. It was not until
field experiments using a much larger turbine were performed [7] was any plateau-like behavior
observed in the performance, and only at a relatively low σ = 0.14. This indicates that a very
large Reynolds number is potentially required for scale-independent behavior.

Present work aims to further the understanding of Reynolds number and solidity changes
on VAWT performance. To accomplish this, the typical model scaling issue for kinetic energy
harvesting devices such as HAWTs and VAWTs was bypassed by using highly compressed air as
the working fluid [8, 2]. This allows for a reduction in the kinematic viscosity by over two orders
of magnitude, which facilitates matching the tip speed ratios and high Reynolds numbers of
the field-scale units simultaneously. To accomplish this, a specialized, high static pressure wind
tunnel known as the High Reynolds number Test Facility (HRTF), has been utilized along with
small-scale wind turbine models designed specifically to operate in the HRTF. In the following
work, we investigate changes in VAWT performance for two different solidities (σ = 0.67 and
1.12) at high Reynolds numbers. This work has direct impact on modeling and simulations if it
is desired to match the high-Reynolds number performance of field turbines.

2. Experiment Description
The experimental facility used for this study, known as the HRTF, is a recirculating-type, high-
static pressure, low-velocity wind tunnel which employs compressed air as the working fluid.
The facility is designed to support static pressures up to 233 bar and free-stream velocities of 10
m/s. This facility has been used in previous work on horizontal and vertical axis wind turbines
[8, 2], as well as two-dimensional airfoil tests [9], zero-pressure-gradient turbulent boundary



layers [10], and high-Reynolds number studies in the wake of a suboff model [11, 12]. Further
details regarding this facility can be found in those studies.

Figure 1. Top view image of the 5 blade and 3 blade VAWT models.

The current experimental configuration utilized the geometry of a commercially-available
wind turbine design from Wing Power Energy (WPE) Inc. A 1:22.5 scale model was constructed
specifically for use in the HRTF. Recent work on this project focused on the scaling behavior
of the power coefficient with Reynolds number as compared to the field measurements [2].
Additional information regarding the specific rotor geometry used can be found in that work.
The current set of experiments focus on investigating the effect of solidity using the same base
geometry for the turbine. This was accomplished by reducing the number of blades on the
model from five to three via the use of a different mounting hub as shown in figure 1. The
configurations studied had corresponding solidities of σ = 0.67 for the 3 blade, and σ = 1.12
for the 5 blade. All geometric details between the two models remained the same except two
blades and their support struts were removed for the 3 blade model. This allowed for a direct
comparison between the two units at matched Reynolds numbers.

Model experiments in the HRTF were performed at fixed Reynolds number based on diameter,
ReD. Typically, tunnel static pressure was set and a mean velocity chosen which corresponded
to the desired ReD. The turbine was then allowed to self-start, completely unassisted until
it reached a steady-state, unloaded, rotational speed. The braking load on the turbine was
then altered to control ω and hence produce various λ values. The reported power data can
be considered the true, aerodynamic power as mechanical losses in the setup were estimated to
be of the same order as the measurement uncertainty. Preliminary bench testing external to
the HRTF indicated excessive mechanical vibration of the 3-bladed model at specific rotational
speeds. During experiments in the HRTF, these rotation rates were avoided to reduce any
experimental error.

3. Results
The main point of comparison for these experiments is the power coefficient. It is defined to be
the mechanical power, which is the product of the measured shaft output torque and rotation
rate, appropriately non-dimensionalized by flow and rotor geometric parameters as

Cp =
τω

1
2ρU

3A
(3)

where A = S×D is the area swept by the rotor. The global performance changes associated with
altering rotor solidity across a range of different Reynolds numbers is examined in this section.
Then the trends observed when approaching the high Reynolds number limit are discussed.



3.1. Power Coefficient
Figures 2 (a) and (b) show the power coefficient as a function of the tip speed ratio. Each power
curve was measured at a fixed value of ReD, with the line color corresponding to the magnitude
of the average ReD for each run. To ease comparisons in regions where data is sparse, 3rd order
polynomials have been fitted to the experimental points as visual guides only and are shown
as solid lines. Immediately evident from these two plots is the performance advantage of the 3
blade, lower solidity unit. In some cases an increase of over 16% was seen in the peak power
coefficient at comparable ReD. Also evident is the shift in operational λ values. Note that
the turbines were completely driven by the incoming flow, and the measured power is the true
mechanical power extracted from the flow by the turbine. The 3 bladed unit operated at higher
values of λ than the 5 blade turbine, with the maximum power coefficient typically residing at
λ ≈ 1.3 instead of λ ≈ 1 for the 5 blade.

(a)

N = 3

(b)

N = 5

Figure 2. Power coefficient trends with tip speed ratio and Reynolds number based on diameter
for the 3 blade model in (a), and the 5 blade model in (b).

Despite these differences, figure 2 shows that both turbine configurations displayed behavior
consistent with Reynolds number invariance as ReD was increased. The change in Cp

with increasing ReD was initially rapid, particularly in the 1 to 3 million range. This
dependence tapers off at sufficiently high Reynolds numbers, with power coefficient values above
approximately 4× 106 remaining essentially constant.

3.2. High Reynolds Number Limit
Prior work in [2] indicated that the correct parameter to characterize invariance was the chord-
based Reynolds number defined as:

Rec =
ρc(U + ωR)

µ
= ReD

c

D
(1 + λ) (4)

The definition ofRec combines the effects of λ andReD into one non-dimensional parameter. The
choice of velocity scale is convenient because the current setup does not permit measurements of
the velocity at the rotor blade itself. Instead, the value of Rec represents the maximum possible
chord-based Reynolds number a blade could encounter at a particular operating point (i.e. for a



given λ and ReD value). This parameter has no direct dependence on the solidity. The effect of
changing σ by altering the number of blades can enter indirectly via λ as a change in the global
performance of the rotor (as seen in figure 2).

(a) (b)

Figure 3. Power coefficient trends with tip speed ratio and chord Reynolds number. The plots
correspond to the two different rotors, (a) 3 bladed, and (b) 5 bladed. Legend applies to both
plots. Note that not all tip speeds are available for both rotor configurations, only λ ∈ [1.2, 1.6]
overlap. Error bars show maximum uncertainty associated with each curve.

Figure 3 shows the interpolated power coefficient as a function of the blade Reynolds number
for a given tip speed ratio. Interpolation of the data was necessary since the model did not
operate at fixed values of λ, instead operating points were specified as brake loads which give
a wide range of tip speeds for each power curve. In these plots the λ location of peak power
coefficient can be readily traced. For the 3 blade unit, λ = 1.3 corresponds to the peak in
Cp except at the lowest tested Reynolds numbers where overlap is seen with the neighboring
λ values (1.2 and 1.4). The 5 blade unit appears to maintain the peak in Cp at λ = 1 for all
Reynolds numbers, although the neighboring tip speed values are quite close for low Rec.

Interestingly, the 3 blade data shows a plateau in Cp above Rec ≈ 1.5× 106 which, as noted
previously, was found to characterize trends observed in the 5 blade data. In particular, for
λ ∈ [1.2, 1.5] asymptotic behavior is clearly evident. The values of λ outside this range also
exhibit relatively constant behavior for the given range of Rec. The trends at low Rec cannot be
confirmed for all tip speeds because some points lie outside the operating envelope of the 3 blade
turbine (in particular λ = 1.7 to 2.0). An additional observation regarding some of the higher
tip speed cases, in particular the λ = 1.6 case, a downward trend in Cp appears at high Rec.
This is most likely due to the increased experimental uncertainty in the power coefficient at high
tip speed ratios. At these operating points, the measured torque is small since the rotational
speed makes up a considerable portion of the shaft power. This is denoted by the error bars
at each tip speed ratio which represents the maximum error associated with each curve. The
5 blade data more clearly demonstrates asymptotic behavior simply due to the relatively small
measurement error.

The plots of figure 3 have shown that for a given value of λ, turbine performance will
not depend on the blade Reynolds number when Rec ≥ 1.5 × 106, for both 3 and 5 blade



Figure 4. Reynolds invariant power coefficient as a function of tip speed ratio. Symbol color
corresponds to the blade number with 3 blade data in black and 5 blade in red. Symbol shapes
correspond to λ, as in figure 3.

configurations. This indicates that despite different performance curves for the two, the
underlying flow physics scale with Reynolds number in a similar manner. To further investigate
this claim, the Reynolds number invariant power coefficient, Cp,∞ is defined. This parameter is
the average Cp taken for data above a cutoff Reynolds number, Rec ≥ 1.5 × 106, evaluated at
specific λ values. With this information, the invariant power curve can be reconstructed and is
shown in figure 4. Experiments and numerical simulations of either the 3 or 5 blade geometry
will return either the black or red curve, respectively, if the blade Reynolds number is above
Rec ≥ 1.5× 106.

The near asymptotic behavior of Cp is also of interest since many experiments and simulations
operate at reduced Reynolds numbers. The data of figure 3 has been normalized with the Cp,∞
curves of figure 4. In this way, the values will approach unity as Rec is increased, as shown
in figure 5 for the 3 and 5 blade turbine geometries. Both turbines appear to collapse on the
same curve, indicating that although the solidity changes the actual value of Cp,∞, it does not
influence the relative change in the power coefficient as it approaches the asymptotic value. Some
scatter is present for the 3 blade data, especially at higher Rec values, but this was expected
due to the additional uncertainty in these measurements as discussed earlier. Thus the single
non-dimensional value of Rec characterizes the rate at which the invariant power coefficient is
achieved irrespective of the individual λ or ReD chosen. Furthermore, no direct dependence is
observed when changing the solidity, at least for the two turbine geometries studied.

4. Conclusions
The study of two different turbine solidities has led to further insight into the behavior of VAWTs
at low Reynolds numbers and the transition to high Reynolds number behavior. In accordance
with prior work, the power coefficient was seen to increase with Reynolds number. Furthermore,
asymptotic behavior was observed above a cutoff Reynolds number of Rec ≥ 1.5 × 106. This
value of Rec was found to characterize both solidities tested (σ = 0.67 for the 3 blade and
σ = 1.12 for the 5 blade unit). The Reynolds invariant power curves were then found using this
criteria. Finally, the rate at which the power coefficient approaches its asymptotic value appears



Figure 5. Power coefficient normalized with the value at Reynolds number invariance, for a
given tip speed ratio. Symbol color corresponds to the blade number with 3 blade data in black
and 5 blade in red. Symbol shapes correspond to λ, as in figure 3.

to depend only on Rec and not directly on solidity, for the two cases tested in this work.
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