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This paper presents the design of a geometrically nonlinear aeroelastically scaled model in
a compressed air wind tunnel (CAWT) facility using a two-pronged approach that integrates
the classical dimensional analysis and a systematic multi-disciplinary optimization procedure.
The CAWT facility, recently constructed at Penn State, enables large Reynolds numbers to
be tested using small models, which effectively removes the usual approximation of Reynolds
number in aeroelastic wind tunnel tests. To develop the scaled model, the two-pronged approach
first identifies the groups of similarity parameters of the aeroelastic model using classical
dimensional analysis. Next, when some of the similarity parameters cannot be satisfied due
to limitations of manufacture and test conditions, numerical optimization is performed to
adjust the scaled model to maintain the similarity in the aeroelastic characteristics, such as the
flutter boundary. A sample-efficient multifidelity multi-objective Bayesian optimization (M2BO)
algorithm is proposed to tackle the highly nonlinear aeroelastic optimization problem. The
developed methodologies are applied to the scaling of the Pazy wing model, which is designed
for large deformation aeroelastic experiments. The results have demonstrated the efficacy of
utilizing the CAWT facility for aeroelastic tests that enables a significantly wider range of model
scales beyond that of a conventional wind tunnel, while maintaining the aerodynamic similarity.
Furthermore, the two-pronged approach has been demonstrated to produce the design of a
practically-viable aeroelastically scaled model in the presence of model imperfections. The
initial success opens up a unique venue for the design, analysis, and testing of scaled nonlinear
aeroelastic models with enhanced reproduction of operating conditions in the CAWT facility.

List of Symbols

𝑏, 𝑐 Half-chord and full-chord lengths
𝑐𝑎 Airfoil camber
c𝐸 , c𝐼 Equality and inequality constraints
𝑐( · , · ) Multifidelity cost function
D Observed data for Gaussian process
𝑓𝑖 Model for objective 𝑖
f Set of models for all objectives
GP Gaussian process
I, 𝐼𝑖 𝑗 Tensor of moments of inertia and its elements, 𝑖, 𝑗 = 1, 2, 3
I𝑛 Identity matrix of dimension 𝑛 × 𝑛
K, 𝐾𝑖 𝑗 Effective stiffness matrix and its elements, 𝑖, 𝑗 = 1, 2, 3, 4
K𝑛, k𝑛 Sample covariance matrix and vector in GP
𝑘 Reduced frequency
[𝐿] Dimension of length
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[𝑀] Dimension of mass
𝑚 Lumped mass
P Pareto front set
p, 𝑝𝑖 Position vector of lumped mass and its elements, 𝑖 = 1, 2, 3
𝑅𝑒 Reynolds number
[𝑇] Dimension of time
𝑡𝑎 Airfoil thickness
𝑉∞ Freestream velocity
S Fidelity space
𝑠 Model fidelity
𝑥 Spanwise coordinate
x Vector of design variables
X Input space
𝑦 objective observation
𝛼𝑟 Root angle of attack
^□ Scaling ratio for a quantity □

` Air viscosity
`𝑛 Gaussian process mean
𝜌 Air density
𝜔 Frequency
𝜔ℎ, 𝜔𝛼 Nominal bending and torsional frequency
𝛀 Gaussian process hyperparameters
𝜎 Gaussian process variance
□𝐹 Quantities at flutter point
□𝑚 Quantities related to the scaled model
□𝑝 Quantities related to the prototype
AePW3 The Third Aeroelastic Prediction Workshop
CAWT Compressed Air Wind Tunnel
EHVI Expected hypervolume improvement
GEBT Geometrically Exact Beam Theory
M2BO Multifidelity Multi-objective Bayesian Optimization
OOP Out-Of-Plane
PF Pareto frontier
SHARPy Simulation of High Aspect Ratio airplanes and wind turbines in Python
UVLM Unsteady Vortex Lattice Method

I. Introduction
The ever-lasting pursuit of energy efficiency in aviation has led to aircraft with increasingly flexible and light-weight

structures, represented by high-aspect-ratio wing designs. Very flexible wing structures, however, are likely to undergo
large nonlinear deformations during flight and experience catastrophic aeroelastic instabilities, especially flutter, of
which an infamous and classical example is the Helios mishap [1].

Extensive computational efforts have been devoted to the nonlinear aeroelastic analysis of very flexible wings that
account for the variation of structural modal properties and aerodynamic shape due to the geometrically nonlinear
deformation [2–5]. In parallel, experimental campaigns have been developed aiming at understanding the nonlinear
aeroelastic behavior and validating the computational tools. One of the early efforts is the Duke University wing test [6],
which offers publicly available model and test data; however, this test model from 2001 is only marginally nonlinear
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and not representative of modern flexible wing structures. A more recent experimental campaign focusing on the
aeroelasticity of very flexible wing structure is the Pazy wing, developed at the Technion [7, 8], as a part of the Third
Aeroelastic Prediction Workshop (AePW3) Large Deflection Group [9]. The Pazy wing serves as an excellent benchmark
case that admits aeroelastic deformations up to 60% of the semispan and provides detailed model and test data for
computational validation. A series of computational studies have been published for the aeroelastic modeling and flutter
prediction of the Pazy wing and have achieved reasonable accuracy [10–15]. Furthermore, as a community effort, the
relevant computational models have been made publicly available [13], under the open-source analysis framework of
SHARPy (Simulation of High Aspect Ratio airplanes and wind turbines in Python) [16]. Such availability has enabled
further experimental and computational exploration of the aeroelastic characteristics of very flexible wing structures.

The Pazy wing configuration is designed and built specifically for the nonlinear aeroelastic testing in the wind tunnel
and not intended to be a scaled model for any full-size prototypes [8]. A natural question to ask after the initial success
of the computational validation is: How can the Pazy wing results inform the aeroelastic scaling, testing and analysis of
a full-size very flexible wing configuration? This question can be tackled by starting with an attempt to aeroelastically
scale the Pazy wing model and identify the challenges in the scaling of such a structure with geometrically nonlinear
aeroelastic deformations.

In the last seven decades, a considerable amount of research efforts have been devoted to the development of
aeroelastic scaling techniques to enable the wind tunnel testing of aeroelastic problems of increasing complexity. The
fundamentals of aeroelastic scaling, based on the dimensional analysis, are summarized in the classical textbook on
aeroelasticity by Bisplinghoff et al. [17]. The topic of aeroelastic scaling is further expanded in the AGARD Manual
on Aeroelasticity [18] with a provision of details on model construction and testing. The classical aeroelastic scaling
approach has been practiced extensively at the Transonic Dynamic Tunnel at NASA Langley Research Center, which is
a dedicated facility for testing aeroelastically scaled models [19]. The classical scaling methods have considered linear
structures and aerodynamics, leading to the two key requirements of (1) geometrically scaling the aerodynamic shape,
and (2) matching the nondimensional natural frequencies and mode shapes. Furthermore, for very flexible structures, it
has been found that the linear and geometrically nonlinear components of the model follow the same scaling rule, and
the nonlinear aeroelastic scaling can be achieved by matching a set of carefully selected similarity parameters, including
the Froude number [20].

Nevertheless, the classical analytical scaling approach typically faces two challenges. First, the experimental
configuration obtained using analytical scaling laws may require unrealistic wind tunnel conditions, materials having
nonphysical properties, or prohibitive manufacturing specifications. Second, many times it is difficult to account for
strong nonlinearities and coupling effects in a multidisciplinary problem, which may lead to multiple groups of similarity
parameters requiring conflicting scaling laws.

The first challenge is typically addressed by redesigning the internal structure of the scaled model such that its
structural dimensionless parameters are consistent with the full scale prototype. The redesign strategy for linear
structures has been achieved using a modal or multidisciplinary optimization procedure [21–24]; the optimization
approach has also been extended for nonlinear aeroelastic scaling problems [25, 26]. Furthermore, utilizing a wind
tunnel having a capability of varying gas density and pressure can facilitate the improved matching of the similarity
parameters related to aerodynamics. The second challenge has been classically addressed using the “restricted purpose”
test, which ignores some coupling effects, or the “incomplete” test, which incorporates external artificial loads to
compensate for the mismatch in scaling [27, 28]. Such approaches may be insufficient for modern aircraft such as those
with very flexible wings, due to the strong coupling between the nonlinear structure and unsteady aerodynamics.

More recently, a systematic scaling methodology, called the two-pronged approach, was developed for the scaling of
general multidisciplinary problems [29–34]. The two-pronged approach combines the classical dimensional analysis
with modern numerical simulation methods, as illustrated in Fig. 1. On the left-hand branch, basic scaling requirements
are established using dimensional analysis, in a manner that resembles the classical procedure. On the right-hand
branch, complete multidisciplinary solutions for the prototype as well as the scaled model are obtained using numerical
simulation. From the comparison and adjustment of these two models, achieved using an optimization procedure, the
“numerical similarity solutions” are generated to replace the analytical similarity solutions for refinement of the scaling
laws. The initial success of the two-pronged approach has been demonstrated via the aerothermoelastic scaling of
high-speed aircraft structures [33, 34], where a vanilla multi-objective Bayesian optimization algorithm was employed
to identify numerically scaled models from a non-convex design space to achieve simultaneous similarities in structural
and thermal responses; such similarities are otherwise not achievable using classical scaling approaches.

It was found that the success of the two-pronged approach hinges on an optimization algorithm to explore the highly
non-convex design space of the scaled model in a robust and efficient manner. Given the computational expense of
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Two-pronged approach

Obtain refined
scaling laws for MDDS

Classical approach
Analytical derivation 

of multi-physics 
similarity parameters

“Modern” approach
Multi-fidelity data;

Bayesian optimization;
Symbolic regression

Fig. 1 Illustration of the two-pronged approach for deriving scaling laws. MDDS stands for Multi-Disciplinary
Dynamical System, e.g., an aeroelastic system.

coupled nonlinear aeroelastic simulations and lack of accurate derivatives from such simulations, the two-pronged
approach, previously introduced in [33, 34] can benefit from an advanced multifidelity multi-objective Bayesian
optimization (M2BO) algorithm. The M2BO utilizes simulations of multiple fidelities that trade computational accuracy
for efficiency. Such simulations are characterized by one or more tunable fidelity parameters (e.g., mesh resolution,
linearization, etc.) which can be controlled to achieve cost-accuracy trade-off. Then, our proposed M2BO algorithm
relies on learning the correlations between the models at different fidelities (see e.g., [35]) to exploit such a trade-off and
result in more sample-efficient optimization. Finally, the M2BO algorithm can incorporate existing experimental data as
an even higher level of fidelity information, that can be leveraged to guide the optimization process.

Recently, a new compressed air wind tunnel (CAWT) facility has been constructed at Penn State. This facility
operates as a conventional single-return wind tunnel, but has an adjustable range of static pressures from atmospheric up
to 34 atmospheres (500 psi). This enables large Reynolds numbers to be tested using small models as the kinematic
viscosity of air is reduced upon pressurization. Key to aeroelastic scaling considerations is that only low velocities are
needed to produce the correct aerodynamic similarity parameters, reducing the flow frequencies while still achieving
flight-relevant conditions. This capability opens up a unique venue for the design, analysis, and testing of scaled
nonlinear aeroelastic models. This paper serves as a preliminary study to design an aeroelastically scaled model for the
Pazy wing configuration based on the CAWT specifications, so as to accurately reproduce its flutter characteristics.
Specifically, the objectives are to

1. Formulate the classical and numerical scaling problems for the Pazy wing configuration;
2. Extend the two-pronged approach with a multifidelity multi-objective Bayesian optimization algorithm;
3. Generate aeroelastically scaled models for the Pazy wing using the two-pronged approach;
4. Explore the feasibility of performing scaled aeroelastic tests in the CAWT facility.

II. Methodology

A. Aeroelastic modeling of Pazy wing
The Pazy wing configuration is specifically designed for aeroelastic wind tunnel experiments with geometrical

nonlinearity [7]. The prototype is a straight wing with a typical rib-spar structure, having span 𝐿 = 550 mm, chord
length 𝑐 = 100 mm, and a uniform cross-section of NACA0018 with camber 𝑐𝑎 and thickness 𝑡𝑎. The spar is made of
Aluminum 7075 and 550 mm long, 60 mm wide, and 2.25 mm thick. A wing-tip rod is added to hold extra weights that
can be used to tune the modal and flutter characteristics of the wing. The overall weight of the wing is 0.32 kg. The
wing is mounted vertically, so that the gravity effect is insignificant. The images and geometrical models for the built-up
wing configuration are available on the NASA AePW3 website [9].

The flutter characteristics of the Pazy wing is highly nonlinear [7, 8, 13–15]. When the wing has a nonzero root
angle of attack, 𝛼𝑟 , the wing experiences geometrically nonlinear deformation with a deformation up to 60% of the wing

4

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

Ja
nu

ar
y 

20
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
20

40
 



span, as the freestream velocity 𝑉∞ increases. The nonlinear deformation leads to two distinct flutter mechanisms: (1) A
hump type of instability at lower velocity (𝑉∞ ∼ 30 − 60 m/s) that involves the first torsion and the second out-of-plane
(OOP) bending modes; and (2) regular flutter at higher velocity (𝑉∞ ∼ 70− 90 m/s) that involves the first torsion and the
first (OOP) bending modes. As 𝛼𝑟 increases, the onsets of both the hump and regular flutter behaviors occur at a lower
flow velocity, while the hump instability persists for a shorter range of flow velocity.

Despite the nonlinearity of the Pazy wing problem, reasonable correlation between experimental and computational
analysis has been achieved using mid-fidelity aeroelastic models that consists of nonlinear beam models and potential-
flow-type aerodynamics models [8, 11, 13–15]. One of such implementations is SHARPy, that is based on the
geometrically exact beam theory (GEBT) and an unsteady vortex lattice method (UVLM); the solver has been generously
made open-source by the authors, together with publicly available model data for the Pazy wing [13, 16]. The
SHARPy-based solution procedure starts with a nonlinear static aeroelastic trim of the wing configuration at a given 𝛼𝑟
and 𝑉∞, followed by a linearized stability analysis at the trim state using a reduced-order model approach. Note that
while UVLM inherently assumes a potential flow formulation where the viscosity is confined to thin boundary layers
and negligible, the viscous effect may be incorporated via cross-sectional corrections of the airfoil drag coefficient using
Reynolds-number-dependent polar curve data, e.g., computed using XFOIL.

B. Description of CAWT
The CAWT was designed to enable high Reynolds number model testing at small physical scales. The primary

component is the toroidal pressure vessel, shown as a schematic in figure 2. The vessel was manufactured to ASME
standards and can withstand pressures up to 34 atm (500 psi). The vessel is filled using a Kaeser compressor system
consisting of an ASD 40T rotary screw compressor followed by an N 502-G booster compressor which outputs the
dried, filtered air to the CAWT vessel. To operate as a wind tunnel the CAWT requires several additional components
including a 450 hp fan and drive motor combination, internal flow conditioning and test-section duct work, as well as
flow guide vanes used in the four elbows. The high pressure operation of the CAWT will be enable Reynolds numbers
of approximately 30 million per meter (9 million per foot) in the circular, 1.1m (42 inch) diameter test section. The
highest Reynolds number condition occurs at the max anticipated velocity of 15 m/s and highest pressure, which
gives a resulting flow density of approximately 40 kg/m3. A major benefit of compressed air wind tunnels is that the
dynamic viscosity of air is only weak function of pressure. An equivalent geometry water facility can only achieve
an approximately fifteen times increase in 𝑅𝑒 due to the high fluid viscosity (for the same flow speed). Another key
benefit of compressed air testing is the ability to vary the Reynolds number independently of the fluid velocity. This is
especially useful for examining dynamic phenomena where a driving frequency is present that scales with the flow
speed, such as the reduced frequency, 𝑘 = 𝜔𝑉∞/𝑏. Here 𝑏 is the half-chord, 𝜔 the oscillation frequency, and 𝑉∞ the
freestream velocity. In this way, we can achieve large Reynolds numbers at low flow speeds. This reduces experimental
complexity and will enable a wider range of 𝑘 values to be examined.

C. Formulation for aeroelastic scaling
Next, the design of an aeroelastically scaled model considering the CAWT specifications is presented, first using the

classical dimensional analysis approach and then augmenting with an optimization-based numerical scaling approach.
In this section, the notations [𝑀], [𝐿] and [𝑇] are employed to denote the dimensions of mass, length and time,
respectively.

Fig. 2 Rendering of the assembled CAWT pressure vessel shell.
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1. Identification of groups of similarity parameters
First, based on the mid-fidelity aeroelastic model, the key dimensional parameters governing the aeroelasticity of the

Pazy wing is determined. In the UVLM model, the unsteady aerodynamic properties are completely determined by the
flow conditions 𝑉 and 𝜌, as well as the aerodynamic shape, i.e., wing span 𝐿, chord length 𝑐, airfoil camber 𝑐𝑎 and
thickness 𝑡𝑎. The GEBT model reduces a 3D slender structure into a 1D beam model along a reference axis, 𝑥, and the
equivalent beam properties are computed at a series of stations. The inertial properties include: (1) the lumped mass
𝑚(𝑥), (2) mass offset p(𝑥) as a 3 × 1 vector, and (3) moments of inertia I(𝑥) as a symmetric 3 × 3 tensor. The stiffness
properties are characterized by a symmetric 4 × 4 effective stiffness matrix K(𝑥). The diagonal elements of K, i.e.,
𝐾11, 𝐾22, 𝐾33, 𝐾44, are associated with the stiffness factors for extension, torsion, OOP bending, and in-plane bending,
respectively, while the off-diagonal terms are associated with the coupling between the four forms of deformation.
Finally, the quantity of interest as the output of the aeroelastic analysis is the frequency 𝜔 of the coupled aeroelastic
response.

Next, the non-dimensional similarity parameters governing the aeroelastic model are derived in two steps. In the
first step, the distributions of the inertial and stiffness properties are non-dimensionalized using the quantities at the root
of the wing,

𝑚(𝑥)
𝑚(0) ,

p(𝑥)
𝑝1 (0)

,
I(𝑥)
𝐼11 (0)

,
𝐾11 (𝑥)
𝐾11 (0)

,
𝐾1𝑖 (𝑥)
𝐾12 (0)

,
𝐾2𝑖 (𝑥)
𝐾22 (0)

,
𝐾 𝑗𝑘 (𝑥)
𝐾33 (0)

, (𝑖 = 2, 3, 4; 𝑗 , 𝑘 = 3, 4) (1)

where 𝑥 = 𝑥/𝐿 and the dimensions of the reference quantities are, respectively, 𝑚(0) ∼ [𝑀], 𝑝1 (0) ∼ [𝐿] 𝐼11 (0) ∼
[𝑀𝐿2], 𝐾11 (0) ∼ [𝑀𝐿𝑇−2], 𝐾12 (0) ∼ [𝑀𝐿2𝑇−2], 𝐾22 (0) ∼ [𝑀𝐿3𝑇−2], and 𝐾33 (0) ∼ [𝑀𝐿3𝑇−2]. Note the
dimensions of 𝑚(0) and 𝐼11 (0) are due to the lumped formulation.

In the second step, introduce nominal frequencies in bending and torsion, respectively,

𝜔ℎ =

√︄
𝐾33 (0)
𝑚(0)𝐿3 , 𝜔𝛼 =

√︄
𝐾22 (0)
𝐼11 (0)𝐿

(2)

The non-dimensional similarity parameters governing the aeroelastic model, which resembles the classical set of
aeroelastic similarity parameters [17, 20], are derived as

Geometry:
𝑝1 (0)
𝑏

,
𝑐𝑎

𝑏
,

𝑡𝑎

𝑏
,

𝑏

𝐿
; (3a)

Structure:
𝑚(0)
𝜌𝑏3 ,

√︄
𝐼11 (0)
𝑚(0)𝑏2 ,

𝜔ℎ

𝜔𝛼

,
𝐾11 (0)𝑏2

𝐾33 (0)
,

𝐾12 (0)𝑏
𝐾33 (0)

; (3b)

Aerodynamics: 𝑅𝑒 =
𝜌𝑉𝑏

`
; (3c)

Coupling: 𝑘 =
𝜔𝑏

𝑉
, �̄� =

𝜔

𝜔𝛼

. (3d)

where by convention the half chord length 𝑏 = 𝑐/2 is used instead of 𝑐.
Equations (1)-(3) define the complete set of similarity parameters for the Pazy wing. When compared to the classical

scaling for aeroelastic flutter, an extra set of similarity parameters are introduced due to the distributed inertia and
stiffness properties, as well as the stiffness coupling.

A successful aeroelastic scaling implies the reproduction of 𝑘 and �̄� in the scaled model, which can be achieved,
theoretically, by matching the remaining groups of similarity parameters between the model and the prototype.

2. Analytical scaling using dimensional analysis
With the similarity parameters groups derived, the analytical approach is attempted to derive aeroelastically scaled

models. To start with, denote the quantities associated with the model and the prototype using subscripts 𝑚 and 𝑝,
respectively, and introduce the notation

^□ =
□𝑚

□𝑝

(4)

representing the scaling factor, i.e., the ratio of quantity □ between the model and the prototype.
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The scaling of the parameters defining the aeroelastic model boils down to the determination of the scaling factors
for the fundamental quantities: length 𝐿, mass 𝑀 and time 𝑇 . For length, one can simply use ^𝐿 = ^𝑏; for mass, one can
use ^𝑀 = ^𝜌^

3
𝑏
. As for the time scaling factor, one can leverage the reduced frequency. When this quantity is matched,

^𝜔^𝑏

^𝑉
= 1 ⇒ ^𝜔 =

^𝑉

^𝑏
(5)

Since 𝜔 ∼ [𝑇−1], the time scaling factor can be defined as ^𝑇 = ^𝑏/^𝑉 . Observing the definitions of ^𝐿 , ^𝑀 and ^𝑇 , it
is clear that an aeroelastically scaled model is completely defined given ^𝜌, ^𝑏 and ^𝑉 .

Regular wind tunnel The Pazy wing experiment was performed in a conventional low-speed wind tunnel where the
working gas is air with constant density and viscosity, i.e., ^𝜌 = 1 and ^` = 1. To avoid compressibility effects, the
maximum flow speed in the wind tunnel needs to be lower than Mach 0.3, or approximately 𝑉 ≤ 100m/s. Since the
original Pazy wing model has a flutter speed that can be as high as ∼ 90m/s, the ratio ^𝑉 ≤ 100

90 ≈ 1.11.
If one would like to maintain the Reynolds number similarity for the scaled model in the conventional low-speed

wind tunnel,
^𝑅𝑒 =

^𝜌^𝑉 ^𝑏

^`
= 1 ⇒ ^𝑏 = ^−1

𝑉 (6)

or ^𝑏 ≥ 0.9, i.e., it is only possible to scale the model down by a marginal 10%.
If one relaxes the Reynolds number similarity, only requiring the order of magnitude in the Reynolds number be

similar, say ^𝑅𝑒 ∈ [0.2, 1]. Then
^𝑏 = ^𝑅𝑒^

−1
𝑉 ∈ [0.18, 0.9] (7)

which allows for scaling down the model by a factor ∼ 5.

Compressed air wind tunnel Now consider the CAWT facility, where the working gas is air with variable densities
and constant viscosity. Approximately, ^𝜌 ∈ [1, 30] and ^` = 1. The flow speed in CAWT, however, maximizes at a low
value of 15m/s, which corresponds to ^𝑉 ≤ 15

90 ≈ 0.167.
To maintain Reynolds number similarity in CAWT,

^𝑅𝑒 =
^𝜌^𝑉 ^𝑏

^`
= 1 ⇒ ^𝑏 = (^𝜌^𝑉 )−1 (8)

or ^𝑏 ≥ 1/5. Therefore, unlike the conventional wind tunnel, one can obtain a scaled model in CAWT with a factor as
high as 5 without sacrificing the aerodynamic similarity.

With the key scaling factors known, one may proceed to scale the rest of the parameters in the model. For example,
the stiffness term, e.g., 𝐾33 (0) scales with [𝑀𝐿3𝑇−2],

𝐾33,𝑚 (0)
𝐾33, 𝑝 (0)

= ^𝑀 ^
3
𝑏^

−2
𝑇 = ^𝜌^

4
𝑏^

2
𝑉 ∼ 10−3 (9)

3. Numerical scaling by optimization
The CAWT facility allows for an aeroelastic scaled test with fully matched aerodynamic similarity. However, it is

well known that the scaling may pose unrealistic requirements on the model construction when the structural similarity
parameters are involved. For example, naively scaling the rib-spar structure by the given length scaling factor may lead
to extremely thin structural members that are difficult to manufacture and maintain. A typical approach is to design the
internal structure of the scaled model to match the non-dimensional distributions of equivalent inertial and stiffness
properties, i.e. the similarity parameter group in Eq. (1).

Nevertheless, for the Pazy wing model, there is a disparity in the orders of magnitude of different equivalent stiffness
terms: 𝐾11, 𝐾44 and 𝐾14 are much larger than 𝐾12, 𝐾23 and 𝐾24. After the scaling by a factor of 10−3, as shown in Eq.
(9), the smaller terms, such as 𝐾12, 𝐾23 and 𝐾24, may become too small to be reproduced accurately in the manufactured
model. In other words, while it is theoretically possible to obtain a perfectly aeroelastically scaled model, especially in
the settings of the CAWT, the similarity parameter group in Eq. (1) might not be achievable due to manufacturing
limitations, thus leading to an imperfectly scaled model.
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To circumvent the practical limitations, one alternative is to use the two-pronged approach, which relaxes the scaling
requirements for part of the similarity parameters, such as those for the extremely small stiffness terms. Instead of using
the similarity parameters, the approach determines the relaxed stiffness terms for the scaled model via an optimization
formulation, with an objective function that minimizes the differences in non-dimensional quantities of interest between
the prototype and the model.

Specifically for the Pazy wing model, the goal is to match the reduced frequencies at flutter onset 𝑘𝐹 as a function
of 𝛼𝑟 between the model and the prototype. Since there are two distinct flutter mechanisms, two functions need to
be matched, which are denoted 𝑘𝐹1 (𝛼𝑟 ) and 𝑘𝐹2 (𝛼𝑟 ). For a set of selected {𝛼𝑟 ,𝑖}𝑁𝑖=1, one can define two objective
functions,

𝑓𝑙 =

𝑁∑︁
𝑖=1

��𝑘𝐹𝑙,𝑚 (x) − 𝑘𝐹𝑙, 𝑝

��2 , 𝑙 = 1, 2 (10)

where x is a vector of design variables consisting of the stiffness terms for the scaled model that are impractical to scale
in the conventional manner, i.e., 𝐾12, 𝐾23 and 𝐾24. The function 𝑘𝐹𝑙,𝑚 (x) can be evaluated using a numerical tool, such
as SHARPy.

Subsequently, a multi-objective optimization problem is defined as follows,

x∗ = arg min
x

f (x) = [ 𝑓1 (x), 𝑓2 (x)] (11a)

s.t. c𝐸 (x) = 0 (11b)
c𝐼 (x) ≤ 0 (11c)

where c𝐸 are equality constraints representing the analytical scaling requirements that are still enforced, e.g., those
in Eq. (3), while c𝐼 are the inequality constraints representing the wind tunnel and manufacturing restrictions, e.g.,
requiring the stiffness terms to be larger than a threshold value.

The solution to Eq. (11) shall produce a Pareto front, i.e., a set of solutions in which one objective cannot be
decreased without increasing the other objective(s). If the numerical scaling is successful, there is a particular solution
in the Pareto front that achieves a balanced minimization of the two objectives, i.e., simultaneously matching the flutter
characteristics in an approximate manner.

D. Multifidelity multiobjective Bayesian optimization (M2BO)
Our goal is to solve the multiobjective optimization problem in (11) using a multifidelity Bayesian optimization

method. In this regard, we introduce a novel multifidelity multiobjective Bayesian optimization (M2BO) which we
present as follows. Let 𝑓1, . . . , 𝑓𝑚 denote the 𝑚 objectives which are unknown but observable functions defined as
𝑓𝑖 : X → R, where X ⊂ R𝑑 is a compact domain. Note that we will present a generalized formulation here, but for our
actual application 𝑚 = 2 and the 𝐽’s are some affine functions of 𝑓 . Furthermore, we assume that we have lower fidelity
approximations for each model available, of the form 𝑓1, . . . , 𝑓𝑚, where 𝑓𝑖 : X × S → R with S being the fidelity
domain. That is ∀x ∈ X, 𝑠 ∈ S, 𝑓𝑖 (x, 𝑠) corresponds to an approximation to the function 𝑓𝑖 at fidelity 𝑠. Note that we
assume, without loss of generality, that S = [0, 1], where 𝑓𝑖 (x, 1) := 𝑓𝑖 (𝑥) and thus lower values of 𝑠 corresponds to
lower fidelities. We also assume there is a known cost function 𝑐(x, 𝑠) : X × S → R+ which quantifies the cost of
querying each model at some input-fidelity pair (x, 𝑠).

Our approach is to place a Gaussian process (GP) prior on each model as follows:

𝑓1 ∼GP(0, 𝑘1 ( · , · ))
...

𝑓𝑚 ∼GP(0, 𝑘𝑚 ( · , · )),

(12)

where we have assumed that each GP has zero-mean and a positive definite kernel function 𝑘𝑖 : (X ×S) × (X ×S) → R.
In this work, we assume that each GP is independent of the others and are initially constructed with a set of seed
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observations as follows:

𝑦1, 𝑗 = 𝑓1 (x 𝑗 , 𝑠 𝑗 ) + 𝜖1; D1,𝑛 ={(x 𝑗 , 𝑠 𝑗 ), 𝑓1 (x 𝑗 , 𝑠 𝑗 )}𝑛𝑗=1

...

𝑦𝑚, 𝑗 = 𝑓𝑚 (x 𝑗 , 𝑠 𝑗 ) + 𝜖𝑚; D𝑚,𝑛 ={(x 𝑗 , 𝑠 𝑗 ), 𝑓𝑚 (x 𝑗 , 𝑠 𝑗 )}𝑛𝑗=1,

(13)

where D𝑖,𝑛, 𝑖 = 1, . . . , 𝑚 is the set of observations for the 𝑖th objective, and 𝜖𝑖 ∼ N(0, 𝜎2
𝜖 ,𝑖

) are Gaussian white noise
with unknown variance 𝜎2

𝜖 ,𝑖
. Due to the independence of GPs and by virtue of a Gaussian likelihood that we assume,

the posterior distributions of our GPs, conditioned on the observations are derived via Bayes’ law and given by [36]

𝑓𝑖 (x, 𝑠) |D𝑖,𝑛,𝛀𝑖 ∼ GP(`𝑛,𝑖 (x, 𝑠), 𝜎2
𝑛,𝑖 (x, 𝑠)),

`𝑛,𝑖 (x, 𝑠) = k⊤
𝑛,𝑖 [K𝑛,𝑖 + 𝜎2

𝜖 ,𝑖I𝑛]−1y𝑛
𝜎2
𝑛,𝑖 (x, 𝑠) = 𝑘 ((x, 𝑠), (x, 𝑠)) − k⊤

𝑛,𝑖 [K𝑛,𝑖 + 𝜎2
𝜖 ,𝑖I𝑛]−1k𝑛,𝑖 ,

(14)

where k𝑛,𝑖 is a vector of covariances between (x, 𝑠) and all observed points in D𝑖,𝑛, K𝑛 is a sample covariance matrix
of observed points in D𝑖,𝑛, I𝑛 is the identity matrix, and y𝑖,𝑛 is the vector of all observations in D𝑖,𝑛; (14) is then used
as a surrogate model for M2BO. The hyperparameters 𝛀𝑖 are estimated by maximizing the marginal log likelihood of
each GP. Note that `𝑛,𝑖 and 𝜎2

𝑛,𝑖
are the posterior mean and variance of the GP, respectively, where the subscript 𝑛

implies the conditioning based on 𝑛 past observations.
We are interested in identifying a Pareto optimal set P∗ of our objectives. We say that f = { 𝑓1, . . . , 𝑓𝑚} dominates

another solution f ≻ f′ if 𝑓𝑖 (x, 𝑠) ≥ 𝑓𝑖 (x′, 𝑠′), ∀𝑖 ∈ [𝑚] and ∃ 𝑖 ∈ [𝑚] for which 𝑓𝑖 (x, 𝑠) > 𝑓𝑖 (x′, 𝑠′). The Pareto
frontier (PF) is defined as P∗ = {f (x) : x ∈ X � x′ ∈ X : f (x′) ≻ f (x)}. A measure of the quality of the PF is the
hypervolume (HV) of the region of the objective space that is dominated by PF and bounded from below by a reference
point.

Our goal is to estimate the PF in a sequential fashion by seeking to expand the hypervolume. We achieve this via our
proposed M2BO approach, where we introduce a multifidelity expected hypervolume improvement (EHVI) acquisition
function. Existing works that use the EHVI approach [37–41] do not acount for the fact that we could have multiple
fidelities for each objective function, and thus that becomes our main focus.

1. Single fidelity multi-objective Bayesian optimization
We begin by providing an overview of multi-objective Bayesian optimization with just one fidelity level (high

fidelity). Then, we will show the extensions to the proposed M2BO. As previously mentioned, in the multi-objective BO,
we are interested in optimizing a set of objectives { 𝑓1, . . . , 𝑓𝑚}, using 𝑚 independent GP models fit from data. Let
the reference point be denoted xref which represents the ideal x, then the hypervolum is defined as the 𝑚 dimensional
volume of a hypercube in the output space bounded by xref on one side and P∗ on the other. Therefore, akin to [42], we
can define the HV improvement (HVI) due to a candidate point x as

𝐻𝑉𝐼 (x) = 𝐻𝑉
(
P
⋃

{x, 𝑦}; xref

)
− 𝐻𝑉 (P; xref). (15)

In (15), we essentially are quantifying the improvement in the HV estimate due to a candidate point x and its observation
𝑦. If P already dominates 𝑦 then, naturally, 𝐻𝑉𝐼 = 0. In practice, we hypothesize 𝑦 with a draw from the joint posterior
GP over all the 𝑚 outputs and take the expectation to define the expected hypervolume improvement (EHVI) acquisition
function [37, 43] defined as

𝐸𝐻𝑉𝐼 (x) = E𝑌
[
𝐻𝑉

(
P
⋃

{x, 𝑌 }; xref

)
− 𝐻𝑉 (P; xref)

]
. (16)

We use the box decomposition method proposed by Yang et al. [44] to compute the hypervolume. The acquisition
function (and its gradient) are estimated via Monte Carlo (MC) sampling from the joint posterior GP and taking sample
averages. Using a fixed set of base samples, we use the quasi MC approach to evaluate and optimize a stochastic
approximation of the acquisition function in (16).
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Algorithm 1: Multifidelity multi-objective Bayesian optimization (M2BO)
1 Given: D𝑛 = {(x𝑖 , 𝑠𝑖), ( �̂�𝑖 , . . . , �̂�𝑚)}𝑛𝑖=1, total number of rounds 𝑞, cost model 𝑐( · ), reference point [xref, 𝑠ref]

and GP hyperparameters 𝛀
Result: Pareto front P

2 for 𝑖 = 𝑛 + 1, . . . , 𝑞, do
3 Find x𝑖 , 𝑠𝑖 ∈ 𝑎𝑟𝑔max

(x,𝑠) ∈X×S
𝑀𝐹𝐸𝐻𝑉𝐼 (x, 𝑠) (acquisition function maximization)

4 Observe �̂� 𝑗 ,𝑖 = 𝑓 𝑗 (x𝑖 , 𝑠𝑖), 𝑗 = 1, . . . , 𝑚
5 Evaluate cost 𝑐𝑖 = 𝑐(𝑠𝑖)
6 Append D 𝑗 ,𝑖 = D 𝑗 ,𝑖−1 ∪ {(x𝑖 , 𝑠𝑖), �̂� 𝑗 ,𝑖}
7 Update GP hyperparameters 𝛀
8 Pareto front estimation:
9 Sample a dense set 𝑋test ∈ X × {1}, where |𝑋test | = 𝑀 and 𝑋test is only at the highest fidelity 𝑠 = 1. We

typically set 𝑀 = 105.
10 Evaluate GP posterior means `𝑞, 𝑗 (𝑋test), ∀ 𝑗 = 1, . . . , 𝑚.
11 Identify non dominated points 𝑛𝑑𝑖𝑛𝑑 = isnondominated({`𝑞,1, . . . , `𝑞,𝑚}).
12 P = 𝑋test [𝑛𝑑𝑖𝑛𝑑𝑠]

2. Multifidelity multi-objective Bayesian optimization
For the M2BO, we use the “fidelity objective augmented” approach proposed by Irshad et al. [45]. The main idea is

that we add an (𝑚 + 1)th objective as a monotonically increasing function of 𝑠, that is 𝑓𝑚+1 := 𝑓𝑚+1 (𝑠). The reason
behind requiring 𝑓𝑚+1 to be monotonic (increasing) is that as we maximize the 𝑚 objectives, the 𝑚 + 1th objective,
if monotonic, will drive the acquisitions closer to 𝑠 = 1. As with several existing multifidelity approaches [46–48],
the acquisition function can be penalized by a cost function 𝑐(𝑠) : S → R+ to penalize too much exploitation of 𝑠 = 1
(highest fidelity and most expensive model).

Let P𝑠 be the Pareto set obtained over the 𝑚 + 1 objectives [f, 𝑓𝑠] and [xref, 𝑠ref] be the reference point in the
augmented input-fidelity space. Then, our multifidelity acquisition function, 𝑀𝐹𝐸𝐻𝑉𝐼, is defined as

𝑀𝐹𝐸𝐻𝑉𝐼 (x, 𝑠) = E𝑌 [𝐻𝑉 (P𝑠=1
⋃{(x, 𝑠), 𝑌 }; [xref, 𝑠ref]) − 𝐻𝑉 (P𝑠=1; [xref, 𝑠ref])]

𝑐(𝑠) (17)

The overall algorithm is summarized in Algorithm 1 and we provide a simple synthetic example to illustrate the
method as follows. We consider the multifidelity Branin-Currin function introduced in [45] and presented here below.

𝑓1 (x, 𝑠) = − [𝑎1 (𝑥22 − 𝑎2 (𝑠)𝑥2
11 + 𝑎3 (𝑠)𝑥11 − 𝑟)2 + 𝑝(1 − 𝑡 (𝑠)) cos(𝑥11) + 𝑝]

𝑓2 (x, 𝑠) = −
[
(1 − 0.1(1 − 𝑠) exp(−1/2𝑥2))

2300𝑥3
1 + 1900𝑥2

1 + 2092𝑥1 + 60
100𝑥3

1 + 500𝑥2
1 + 4𝑥1 + 20

]
,

(18)

where 𝑥11 = 15𝑥1 − 5, 𝑥22 = 15𝑥2, 𝑎1 = 1, 𝑎2 (𝑠) = 5.1/(4𝜋2) − 0.01(1 − 𝑠), 𝑎3 (𝑠) = 5/𝜋 − 0.1(1 − 𝑠), 𝑟 = 6, 𝑝 =

10, 𝑡 (𝑠) = 1/8𝜋+0.05(1− 𝑠). We scale the inputs and outputs such thatX×S = [0, 1]𝑑+1 and 𝑦𝑖 ∈ [0, 1],∀𝑖 = 1, . . . , 𝑚.
The Pareto front, predicted at the highest fidelity 𝑠 = 1, and the % HV (with respect to true HV) predicted at the

highest fidelity are shown in Figure 3. Note that the true HV is an estimate from 10000 MC samples from X × {𝑎} and
evaluating the true functions 𝑓1 and 𝑓2 at these points.

In Figure 4, we compare the proposed multifidelity approach against the single fidelity approach where 𝑠 is defaulted
to 1. Here, we use a cost function 𝑐(𝑠) = exp(5𝑠) for both approaches and start each of them with a set of 𝑛 = 15 seed
points. Note that whereas for the multifidelity approach, the 15 seed points were uniformly and randomly distributed
across the fidelity space, the single fidelity approach had all 15 points at 𝑠 = 1. Therefore, in a way, the single fidelity
is provided with more information than the multifidelity approach at the begining of the algorithm. Then, we repeat
each experiment a total of 3 times where each time the seed samples are randomly chosen; in Figure 4 we show all
3 repetitions. Finally, both approaches were run for a total of 45 iterations. Notice that the multifidelity approach
converges closer to the true HV in less than 1/3 of the cost it takes for the single fidelity approach.
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Fig. 3 Demonstration of M2BO on the multifidelity Branin-Currin function. Left: Pareto front, right: % true
hypervolume predicted; true hypervolume is estimated from a dense MC sample set of size 10000.
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Fig. 4 Comparison of the M2BO against the multi-objective BO having high fidelity information.

III. Results and Discussion
In this section, we present the results for aeroelastically scaled models, first based on the analytical method, and then

using the optimization-based approach.
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A. Analytically scaled aeroelastic models
Two aeroelastically scaled models, Model 1 and Model 2, based on analytical scaling relations are considered. Their

main similarity parameters are scaled in the same manner, as shown in Table 1. The difference is that, in Model 1, all the
nondimensional equivalent beam properties in Eq. (1) are matched with those of the prototype, while in Model 2, only
part of the beam properties are matched to emulate the limitations in manufacturing. Specifically, the non-matching
properties of Model 2 include: 𝐾12 = 𝐾13 = 0 and 𝐾𝑖 𝑗 = 0 for 𝑖, 𝑗 = 2, 3, 4 but 𝑖 ≠ 𝑗 .

To demonstrate the impact of imperfect aeroelastic scaling, the modal and flutter characteristics of the two models
are compared against the prototype. In Fig. 5, the first three natural frequencies of the models are compared as a function
of the freestream velocity at 𝛼𝑟 = 7deg, in which case the wing experiences a deformation larger than 30% of the span.
Note that the frequencies vary with flow speed due to the increase in the static aeroelastic deformation. The frequencies
of Model 1 matches with those of the prototype almost perfectly, indicating that the aeroelastic scaling works for both
the geometrically nonlinear deformation and the modal properties. For Model 2, as expected, the predicted natural
frequencies are not as accurate as those in Model 1, due to the mismatch in stiffness distributions. Still considering the
case of 𝛼𝑟 = 7deg, in Fig. 6, the damping ratio curves of the models showing the hump mode are compared with the
prototype. Model 1 exactly reproduces not only the flutter point, but also the entire flutter characteristics over the range
of flow speed considered. For Model 2, there is a mode switching behavior due to the numerical eigenvalue solver, and
aside from that, the flutter point is shifted by 3%.

Quantity Scaling factor Value
All lengths ^𝑏 0.5

𝑉 ^𝑉 0.1667
𝜌 ^𝜌 12

𝑚(0) ^𝜌^
3
𝑏

1.5
𝐼11 (0) ^𝜌^

5
𝑏

0.375
𝐾11 (0) ^𝜌^

2
𝑏
^2
𝑉

8.333 × 10−2

𝐾12 (0) ^𝜌^
3
𝑏
^2
𝑉

4.167 × 10−2

𝐾22 (0), 𝐾33 (0) ^𝜌^
4
𝑏
^2
𝑉

2.083 × 10−3

Table 1 Aeroelastic scaling factors for Models 1 and 2.

Fig. 5 The natural frequencies for the prototype and the scaled models at 𝛼𝑟 = 7deg.
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Fig. 6 The damping ratios for the prototype and the scaled models at 𝛼𝑟 = 7deg.

B. Optimally scaled aeroelastic models
Next, the nonzero stiffness properties of Model 2 are optimized to produce modal and flutter characteristics that can

more authentically reproduce those of the prototype. Specifically, the M2BO algorithm is used to minimize the errors in
the reduced frequencies at the onset and the exit of the hump mode; the logarithms of the errors are used as the objective
functions, denoted 𝑓1 and 𝑓2. Solvers of two levels of fidelity (𝑠 = {0, 1}) are constructed by choosing different model
discretization parameters.

The Pareto front associated with the aeroelastic scaling is shown in Fig. 7, with contours of the average ( 𝑓1 + 𝑓2)/2.
It indicates the trade-off of the errors in the onset and the exit of the hump mode. The solutions near “Biased 1” show
the case where the exit frequencies of the model and the prototype almost match exactly at the price of erroneous
onset frequency in the model. Similarly, the solutions near “Biased 2” indicate the opposite trend. On the contrary,
the solutions near “Balanced” achieve a balance between the errors in both the onset and the exit frequencies, which
represent a good numerically scaled aeroelastic model. In addition, note that the Pareto front is concave. This means
that if one solves the numerical scaling problem with a single-objective formulation, e.g., with the averaged objective
( 𝑓1 + 𝑓2)/2, then it is impossible to identify the balanced solutions such as Example 2.

The aeroelastic solutions associated with the labelled example solutions are compared with the prototype and the
incorrectly-scaled Model 2 from the previous section, as shown in Fig. 8. Clearly, “Biased 1” and “Biased 2” reproduce
the exit and onset frequencies, respectively, but fail to capture the other frequency. “Balanced” achieves a balanced
match in both the onset and exit frequencies. This marks the initial success of the numerical scaling of a nonlinear
aeroelastic model.
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Fig. 7 The Pareto front of the aeroelastic scaling problem.

Fig. 8 The damping ratios for the prototype and different optimization-based scaled models at 𝛼𝑟 = 7deg.

IV. Concluding Remarks
This study presents a preliminary study on the design of an aeroelastic scaled model for a wing configuration

with large geometrically nonlinear deformation in the context of a compressed air wind tunnel (CAWT) facility. A
complete set of similarity parameters for the aeroelastic model has been identified using the classical dimensional
analysis approach. It is demonstrated that, by leveraging the unique capabilities of CAWT, the wing configuration can be
scaled perfectly by matching all the structural and aerodynamic similarity parameters, including the Reynolds number.
However, the scaling of a model may pose unrealistic requirements on manufacturing, leading to an imperfectly scaled
model that may produce inaccurate flutter characteristics. The design of a practically-viable aeroelastically scaled model
is posed as an optimization problem, following the formulation of the so-called two-pronged approach. The optimization
problem enforces a partial set of similarity parameters and imposes constraints on design variables representing the
limitations in, e.g., manufacture and test conditions.

The optimization problem is solved using a multifidelity multi-objective Bayesian optimization (M2BO) algorithm,
which leverages numerical solvers of multiple fidelities to achieve and exploit a cost-accuracy trade-off to result in
more sample-efficient optimization. The optimized “numerically-scaled” model is benchmarked against the scaled
models obtained using classical scaling approach and is demonstrated to accurately reproduce the modal and flutter
characteristics of the wing configuration. The optimization-based numerical scaling approach opens up a unique venue
for the design, analysis, and testing of scaled nonlinear aeroelastic models with enhanced reproduction of operating
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conditions using the CAWT facility.
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